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Magnetic order in the Ising model with parallel dynamics
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It is discussed how the equilibrium properties of the Ising model are described by an Hamiltonian with an
antiferromagnetic low temperature behavior if only an heat bath dynamics, with the characteristics of a Proba-
bilistic cellular automaton, is assumed to determine the temporal evolution of the system.

DOI: 10.1103/PhysRevE.64.057103 PACS number~s!: 05.50.1q, 75.10.2b, 64.60.Fr
es

ia
at

ng
in
o
te
r
ou

s-
n

ts
se
s:
pe

b
-

by
ic
b
te
in
ng

at
ui
e
e
d
n

rial
the

the
an,
the
er-
rest

n of
ng

et

pin

n

rial
I. INTRODUCTION

In this Brief Report we discuss the equilibrium properti
of probabilistic cellular automata~PCA’s! reversible with re-
spect to a Gibbs measure derived by a suitable Hamilton
A PCA @1–3# is a lattice model with discrete variables th
are subject to a probabilisticsimultaneousupdating in dis-
crete time steps: all configurations are accessible in a si
updating. PCA’s arise as an extended definition of determ
istic cellular automata in which the updating follows a set
deterministic local rules. The huge number of possible de
ministic ~or probabilistic! rules makes the topic of cellula
automata overwhelmingly abundant. One of the most fam
cellular automata systems is Conway’s ‘‘game of life’’@4#;
in spite of the very simple deterministic majority rule a
signed, the system, which is a kind of spin lattice, prese
an extremely rich and complex evolution pattern.

PCA’s have been studied in a wide variety of contex
ranging from biology to the theory of automation. The
models can be thought of as interacting particle system
particular class of cellular automata, known as bootstrap
colation, has been introduced in@5# to model the propagation
of cracks in solids~see also@6#!. A wide discussion on nu-
merical and rigorous results on bootstrap percolation can
found in @7# and @8#. The connections with statistical me
chanics models have been further investigated in@9# and in a
number of papers with a mathematical physics cut@10–12#.
The particular family of automata we study is obtained
implementing in parallel fashion the heat bath dynam
@11#. In other terms, we define a rule for the transition pro
abilities such that all single spins of a lattice are upda
simultaneously with heat bath rates. This amounts to defin
a Markov chain for the evolution of the spin system, havi
the characteristics of a PCA.

We observe that the way of implementing the heat b
dynamics reflects into a qualitative modification of the eq
librium properties of the model. In particular, an Ising-lik
ferromagnetic Hamiltonian with two body interactions, d
fines a PCA reversible with respect to a Gibbs measure
termined by an Hamiltonian allowing a low temperature a
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tiferromagnetic phase. This behavior is absent if a se
dynamics is implemented, for which at most one spin of
system is updated at any time.

The paper is organized as follows. In Sec. II we define
PCA under consideration and the spin model Hamiltoni
H, determining the heat bath single spin rates. In Sec. III
structure and the low temperature antiferromagnetic prop
ties of H8 are discussed in the case of the standard nea
neighbor Ising model and in the case of the~two body! next-
to-nearest neighbor interaction. The dynamical generatio
antiferromagnetic couplings is reviewed in the concludi
remarks.

II. COUPLING PROLIFERATION IN REVERSIBLE PCA’S

Let L be a finite two-dimensional square lattice anduLu
its cardinality. For eachx5(x1 ,x2),y5(y1 ,y2)PL we de-
note by ux2yu the Euclidean distance on the lattice. L
s(x)P$21,11% a spin variable associated to the sitex
PL; the space$1,21%L of configurations is denoted byS.
Let us consider a generic HamiltonianH(s) and the
corresponding equilibrium Gibbs measurem(s)
5exp$2bH(s)%/(hPS exp$2bH(h)% with b the inverse of
the temperature. We now define the heat bath single s
rates: given the sitexPL, we consider the Gibbs equilibrium
measure forsx with respect to a fixed configurations on
L\$x%. Letting aP$21,11%, we have

px~aus!5
exp$2bH~a,s!%

exp$2bH~a,s!%1exp$2bH~2a,s!%
, ~1!

where (6a,s) are the configurations equal tos on L\$x%
and to 6a on x. Note that the normalization conditio
px(aus)1px(2aus)51 is trivially satisfied.

We can now implement the heat bath dynamics in a se
fashion, namely, we can consider the Markov chains t (t
being the discrete time temporal variable!, with transition
probabilities
©2001 The American Physical Society03-1
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P~s,h!5H (1/uLu)px(h(x)us) if 'xPL such thats5h on L\$x%,

0 otherwise
~2!
n
a

a

m

su

ac

te
e
a

on

a

es

cs

eat
een

s

nt

has

ite

he

e
the

odel

ite
ct all

-

for all s,hPS. The transition probabilities~2! are reversible
with respect to the Gibbs measure, i.e., the detailed bala
condition is satisfied or, equivalently, the equilibrium me
sure is the Gibbs measure.

A different point of view can be taken@11#: we define the
transition probabilitiesP(s,h) in such a way that all the
spins aresimultaneouslyand independently updated, in
parallel fashion, with the heat bath rates~1!. Thus, instead of
Eq. ~2! we consider the Markov chains t defined by

P~s,h!5 )
xPL

px„h~x!us… ;s,hPS. ~3!

This amounts to defining a PCA. In general the equilibriu
properties of the Markov chain~3! are not trivial, for in-
stance it is not obvious that there exists a Gibbs mea
such that the detailed balance principle is satisfied.

Let us consider, now, the case of the two body inter
tions and suppose that the Hamiltonian has the form

H~s!52 (
x,yPL

Jx,ys~x!s~y!2 (
xPL

hxs~x!, ~4!

whereJx,yPR are the pair couplings between spins at si
x,y, andhxPR is the external magnetic field acting on th
spin at sitex. For physical reasons we suppose that the p
couplings are symmetric, namelyJx,y5Jy,x for all x,yPL.
The heat bath single spin rates are given by

px~aus!5
1

11exp$2b@H~2a,s!2H~a,s!#%

5
1

2
@11a tanhbSx~s!#, ~5!

where Sx(s)5(yPL\$x%Jx,ys(y)1hx for any sPS and x
PL. It is easy to show@11# that the probabilistic cellular
automaton~3! with single spin rates~5! is reversible with
respect to the Gibbs measurem8 on S associated with the
Hamiltonian

H8~s!52b (
xPL

hxs~x!2 (
xPL

log cosh@bSx~s!#. ~6!

In other words the detailed balance conditi
P(s,h)exp$2H8(s)%5P(h,s)exp$2H8(h)% is satisfied for
any s,hPS. This means thatH8(s) is the equilibrium
Hamiltonian of a system governed byH(s) and evolving
with the law ~3!.

The choice of the two body interaction in Eq.~4! is
strictly connected to the reversibility of the resulting prob
bilistic cellular automaton~3! @2,3#. For example, con-
sider the three body interaction HamiltonianH(s)
05710
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5(x,y,zPLJx,y,xs(x)s(y)s(z) with the three body couplings
Jx,y,z symmetric with respect to permutations of the indic
and such thatJx,y,zÞ0 if and only if xÞyÞzÞx. Then the
problem of showing the reversibility of the parallel dynami
can be reduced to the problem of finding a functionf:s
PS→f(s)PR such that

f~s!23bh~x! (
y,zPL\$x%

Jx,y,zs~y!s~z!

5f~h!23bs~x! (
y,zPL\$x%

Jx,y,zh~y!h~z!,

which has no solution.
Let us now discuss the main feature of reversible h

bath derived probabilistic automata. As it has been s
above, if the starting Hamiltonian is given by Eq.~4!, then
the Markov chain~3! is reversible with respect to the Gibb
measure with HamiltonianH8 given by Eq.~6!. It is clear
that new kind of interactions, different from the one prese
in the original HamiltonianH, arise whenH8 is considered.

Suppose, for instance, that the starting Hamiltonian
range r .0, namelyJx,y50 for any x,yPL such thatux
2yu.r . Then we haveSx(s)5(y:0,ux2yu<rJx,ys(y)1hx ,
a sort of average of the spins inside a ball centered at sx
with radius equal tor. Hence, by expandingH8 as a sum of
potentials we will get all the possible couplings inside t
ball, starting from the two body up to theN(r ) body inter-
action, withN(r ) the number of sites inside the ball. In som
sense these new couplings are dynamically generated. In
following we will discuss few interesting particular cases.

III. TWO EXAMPLES

Let us consider the standard nearest-neighbor Ising m
with no external magnetic field, namely, we consider Eq.~4!
with Jx,y5J/2 for any x,yPL such thatux2yu51, Jx,y
50 otherwise, andhx50 for any xPL. The Hamiltonian
H8 is the sum of averages performed over the four s
crosses centered at each site of the lattice. We then expe
the possible interactions inside the cross.

As it as been seen in@13# it is possible to extract the
potentials and rewrite the HamiltonianH8 in the following
way:

H8~s!52J1 (
^xy&A2

s~x!s~y!2J2 (
^xy&2

s~x!s~y!

2J3 (
Lxywz

s~x!s~y!s~w!s~z!, ~7!

where the three sums@see Fig. 1~a!# are, respectively, per
formed over the pairs of next-to-nearest neighbors~sites at
distanceA2), the pairs of third neighbors~sites at distance
3-2
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2), and the four site diamond shaped clusters~plaquettes
with side length equal toA2). The coupling constants ar
given by

J15
1

4
log cosh~2bJ!;

1

2
bJ, J25

1

2
J1 ,

J35
1

16
log

cosh2~2bJ!

cosh8~bJ!
;2

1

4
bJ, ~8!

where ‘‘; ’’ means the limiting behavior forb→`. There
exist several possible ways to extract the potentials. A v
natural one, in the case of spin variable, is to consider
function wx(s)5 log cosh@(bJ/2)(yPDx

s(y)#, where Dx

5$yPL:uy2xu51% is the set of nearest neighbors of sitex,
and its expansionwx(s)5(X,Dx

c(X))yPXs(y) with the

coefficientsc(X) given by

c~X!5
1

2uDxu (
sP$21,11%Dx

wx~s! )
yPX

s~y!,

where, we recall,uDxu54 is the cardinality ofDx .
It is important to remark that the second nearest neigh

interaction,J1, is positive and dominating; hence we expe
a low temperature antiferromagnetic phase to exist. W
appears interesting is that we have derived an antiferrom
netic behavior in a purely dynamical way as a result of
coupling proliferation. If a parallel heat bath Ising dynami
is implemented, the equilibrium Gibbs measure shows a
temperature antiferromagnetic phase despite the sim
physical ferromagnetic coupling of the Ising model. Th
phenomenon is, obviously, absent if the Ising heat bath
namics is implemented in a serial fashion.

The equilibrium properties of the model can be und
stood by remarking that two independent models are foun
the lattice is partitioned into two square sublattices with s
A2 ~the even and the odd sublattice!. Each model is, indeed
an eight vertex model with nearest neighbors couplingJ1,
next-to-nearest neighbors couplingJ2, and plaquette interac
tion J3. This model has been widely studied both in tw
@14,15# and three@16,17# dimensions. From Eq.~8! and the
very well known properties of the two-dimensional eig
vertex model we have that on each sublattice there are
coexisting low temperature phases, respectively with posi

FIG. 1. CouplingsJ1 , J2, and J3 for the Hamiltonian ~7!
@Hamiltonian~9!# are shown in~a!, ~b!.
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and negative magnetization. Hence, by combining in all
possible ways the two phases we get, for the original mo
the three different low temperature phases correspondin
the three ground statesc0 ,c1 ,c2 ~see Fig. 2!.

It is of some interest a direct study of the Hamiltonian~7!:
ground states can be defined as those configurations
which the Gibbs measurem8, associated to the Hamiltonia
H8, is concentrated when the limitb→` is considered,
namely as the minima of the energyE(s)
5 lim

b→`
H8(s)/b52(xPLuSx(s)u uniformly in sPS. It

is rather clear that with periodic boundary conditions the
exist three coexisting minimac0 ,c1 ,c2PS ~see Fig.
2!, with energy 24uLu, such that c0(x)511, c1(x)
5(21)x11x2, and c2(x)521 for all x5(x1 ,x2)PL. No-
tice thatc1 is the chessboard configuration.

The problem is, now, to understand if this coexistence
different states persists at a finite small temperature, nam
if the system undergoes a low temperature phase transi
We give an heuristic argument: at finite temperature grou
states are perturbed because small droplets of diffe
phases show up. The idea is to calculate the energetic co
a perturbation of one of the four coexisting states via
formation of a square droplet of a different phase. A sim
calculation, see@13#, shows that the energy cost of a squa
droplet of side lengthn of one of the two homogeneou
ground states plunged in one of the two chessboards~or vice
versa! is equal to 8n. On the other hand, if an homogeneo
phase is perturbed as above by the other homogen
phase, or one of the two chessboards is perturbed by
other one, then the energy cost is 16n. Hence, from the en-
ergetical point of view the most convenient excitations a
those in which an homogeneous phase is perturbed b
chessboard or vice versa. Moreover, for each statec0 ,c1 ,c2
there exist two possible energetically convenient excitatio
there is no entropic reason to prefer one of the four grou
states to the others when a finite low temperature is con
ered. This remark indicates that at small finite temperat
the three ground states still coexist.

Let us consider, now, the Ising model with no extern
magnetic field and next-to-nearest neighbor interacti
namely, we consider Eq.~4! with Jx,y5J/2 for anyx,yPL
such thatux2yu5A2, Jx,y50 otherwise, andhx50 for any
xPL. It is possible to extract the potentials as seen abo
The HamiltonianH8 can be written as

H8~s!52J1 (
^xy&2

s~x!s~y!2J2 (
^xy&2A2

s~x!s~y!

2J3 (
hxywz

s~x!s~y!s~w!s~z!, ~9!

FIG. 2. The three ground statesc0 ,c1 ,c2 depicted from the left
to the right.
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 057103
where the three sums@see Fig. 1~b!# are, respectively, per
formed over the pairs of third nearest neighbors~sites at
distance 2!, the pairs of sites at distance 2A2, the plaquettes
with side length equal to 2. The coupling constants are
given by Eq.~8!.

In order to study this model we remark that if the lattice
partitioned into four square sublattices with step 2, then
obtain four independent models one on each sublattice, e
model being again an eight vertex model with nearest ne
bors couplingJ1, next-to-nearest neighbors couplingJ2, and
plaquette interactionJ3. Hence, on each sublattice we ha
the two degenerate ground states with all the spins, res
tively, equal to one and minus one. By combining in all t
possible ways these two states we get, for our model,4

516 different ground states. On the torus, namely, wh
periodic boundary conditions are considered, some of
ground states are equivalent, so we get the seven s
c0 ,c1 , . . . ,c6 in Figs. 2 and 3. The fact that the pha
transition persists at finite small temperature is, as s
above, a straightforward consequence of the known beha
of the eight vertex model.

In this paper we observed the relation between the
body ferromagnetic interaction of the Ising model and
low temperature antiferromagnetic behavior of the equi
rium Hamiltonian obtained evolving the initial system with

FIG. 3. The four ground statesc3 ,c4 ,c5 ,c6 depicted from the
left to the right.
ee
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parallel heat bath dynamics. Any lattice system with tw
body interactions and having a self-organization resemb
the parallel dynamics here described in the simple Is
model, could evolve towards different equilibrium state
The role of the parallel dynamics has been studied also
connection with the Ising-like transitions in coupled map l
tices ~CML’s!. CML’s are lattices of interacting dynamica
systems with continuous phase space~differently from
PCA’s that have discrete phase space! and discrete time. It
has been shown that the nature of the update~synchronous or
asynchronous! is a relevant parameter: continuous transitio
of two-dimensional coupled chaotic@18# and stochastic@19#
CML’s with Ising-like discrete broken symmetry belong to
new universality class. A study on Toom cellular automa
@20# seems to indicate that these particular examples of
lular automata belong to the same universality class
CML’s with synchronized dynamics.

The evolution of the system we consider is governed
local energy~instead of local dynamical rules such as t
Toom rule mentioned before! like in usual algorithms to
simulate Ising interactions, but we consider synchronous
dating. Also our results indicate that the influence of t
updating nature on the physical properties of the equilibri
measure, is certainly an interesting feature that deserves
ther explorations.
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